Multiple Destination Tours' and Paths' Efficient Determination in Directed Graphs Open & Closed Routes' Fast Computation for Navigation and Logistics

Peter H. Richter

ISBN 978-1-63648-284-2, ELIVA PRESS, 2021

The Asymmetric Steiner Traveling Salesman Path Problem (ASTSPP) has been unattended in the past despite its high practical importance for real-time navigation in digital traffic nets! We are given a digraph \vec{G} with asymmetric arc weights, start point s, target point t, and a subset $S \subseteq V(\vec{G})$. The objective is to find a shortest route from s to t in \vec{G} visiting all destinations S at least once. The proposed deterministic solution approach relies on meta-heuristics

- (a) Advanced Scan of Spanning Trees (ASST) applied to approx.. Steiner trees T⊂ G, S⊂ V_T,
- (b) *Tree Structure Adaption (TSA)* that overcomes "flaws" of tree T hampering good results,
- (c) Confined Complete Enumeration (CCE) that rearranges the sequence of the last n≤ 6 spots of S each time a new successor x∈ S has been found,
- (d) *Compact Priority Queue (CPQ)* essentially reducing run-time effort.

Multiple Destination Tours' and Paths' Efficient Determination in Directed Graphs.

Open & Closed Routes' Fast Computation for Navigation & Logistics

Peter H. Richter

Ver T. Richter

Image: Start star

The correspondingly implemented algorithm \mathfrak{A} meets today's demands for navigation and logistics that require to allow ...

graphs G or digraphs \vec{G} being not necessarily complete ones the use of asymmetric arc costs $\vec{\lambda}$: $E_{\vec{G}} \rightarrow \mathbb{R}_{\geq 0}$ routes not required to visit all V_G but a subset $S \subseteq V_G$ routes not required to visit vertices $S \subseteq V_G$ exactly once graphs not committed to observe the triangle inequality open or closed trips by one algorithm with the same efficiency consideration of crossings' road signs / traffic commandments drawing advantage from planar graphs for algorithmic efficiency

- \rightarrow G \subset K_n or $\vec{G} \subset \vec{K}_n$,
- → "Asymmetric" problems,
- → "Steiner" problems,
- \rightarrow not Hamiltonian routes,
- \rightarrow graph metric not required,
- → pari passu s=t or $s\neq t$,
- \rightarrow edge-queuing SPT algorithms
- \rightarrow traffic maps are planar.

Algorithm 🎗 ...

- tackles digraphs as well as undirected graphs $(\vec{\lambda}(x, y) = \vec{\lambda}(y, x) = \lambda(x, y)),$
- can process the cases $S = V_G$ as well as $S \subset V_G$,
- can process the cases s = t as well as $s \neq t$.

That means, a meets all problems X of List 1. That are those, not persisting on Hamiltonian structures.

In graph G= (V _G , E _G) or digraph \vec{G} =(V _G , E _{\vec{G}}) we look for a bijection π describing $\frac{a) \text{ closed path } b) s - t - path}{c) \text{ closed walk } c)s - t - walk}$ via S \subseteq VG.			Instance 3=	Round trip?	G directed?	x∈ S to visit	$S = V_G$?
	TSP	Traveling Salesman Problem	(G, λ)	у	n	1	
	ATSP	Asymmetric TSP	$(\vec{G}, \vec{\lambda})$		у	1	
	TSPP	Traveling Salesman P ath Problem	(C, λ, z, t)			1	V_{G}
X	TSWP	Traveling Salesman Walk Problem.	(G, λ, s, t)		n	≥ 1	S =
	ATSPP	Asymmetric TSPP		n		1	
X	ATSWP	Asymmetric TSWP	$(\vec{G}, \vec{\lambda}, s, t)$		У	≥ 1	
X	STSP	Steiner Trav. Salesman Problem	(G, λ, S)		n		
X	ASTSP	Asymmetric STSP	$(\vec{G},\vec{\lambda},S)$	у	у	<u>\</u> 1	$V_{\rm G}$
X	STSPP	Steiner Tr. Salesman Path Pr.	(G,λ,S,s,t)	n	n	≥1	SIC
X	ASTSPP	Asymmetric STSPP	$(\vec{G},\vec{\lambda},S,s,t)$	n	у		

Graph	$\mathbf{G}=(V_G, E_G), \lambda: E_G \to \mathbb{R}_{\geq 0},$	$\mathbf{x} \in \mathbf{S}$ to be visited:				
Digraph	$\vec{\mathbf{G}} = (V_G, E_{\vec{G}}), \vec{\lambda} : E_{\vec{G}} \rightarrow \mathbb{R}_{\geq 0},$	$x \in S$ to be visited: 1 - exactly once				
Destinations	$\mathbf{S} \subseteq V_{G}$, start s, target t,	$\geq 1 - at \text{ least once}$				
Result:	Bijection π : {1, 2, S } \rightarrow S,					
X :	Problems efficiently solved by ASTSPP algorithm a					

List 1 The TSP Problem Family – a rough overview

The deterministic $O(n^3)$ -algorithm \mathfrak{A} efficiently solves ASTSPP for open and closed tours. It directly uses digital traffic maps G (digraphs) without to twist them to complete ones, what enables that digital traffic map alterations (i.e. turn restrictions, activating / deactivating one-way-streets, considering traffic jam, etc.) can be directly transferred into the domain of \mathfrak{A} in real-time.

The introduction of *Compact Priority Queue* (*CPQ*) Θ compared to the conventional use of $\mathbb{A} \times \mathbb{B}$ (for choosing a set Θ of pairs (scan-entry α , scan-exit β , $|\Theta| = |\mathbb{A}| = |\mathbb{B}|$)) leads to an essential runtime reduction without to peril getting near-optimal results. The new optimization features *Advanced Scan of Spanning Trees* **ASST**, *Confined Complete Enumeration* **CCE** and *Tree Structure Adaption* **TSA** show an impressive optimization potential. However, Table 1 shows that **TSA** seems to lose some of its improvement potential

the more graph G is crammed with spots S. The reason is that a dense ramification $|S| / |V_G| \ge 2/3$ of tree T increasingly hampers *TSA* finding improvement possibilities.

Regarding larger problem sizes $100 \le |S| \le 1.000$, Table 2 shows that the common use of *CCE* and *TSA* gets 15% length improvement compared to the pure use of *ASST*. This improvement capability persists also for |S| = 1.000 where the destination denseness is not so high.

Testing real-time ability (nominal time $\leq 2 \text{ sec}$) algorithm \mathfrak{A} running on a 2,70 GHz PC using graph G_2 with $|\Theta| = 3$ accomplishes tours as with *TSA*: |S| = 115 and without *TSA*: |S| = 1590.

That means that time-critical apps processing higher problem sizes should use *CCE* without *TSA* to keep real-time ability provided a loss of about 5% solution quality is accepted.

Comparing results with the optimal ones, we used large set of random graphs for a problem size |S|= 14 considering remote distant start and target and near distant ones (s=t): Algorithm \mathfrak{A} running with *CCE* and *TSA* ($|\Theta| = 5$) didn't surpass a sample standard deviation $q_{max} = 1,86$ %! Optimization feature *CCE* ($\delta = 5$) contributes evenly over |S| for the most respectable result improvement. However, only *TSA* changing $\mathbf{T} \xrightarrow{\wp} \mathbf{T}'$ w.r.t. proposal \wp enables *CCE* providing its noticeable contribution to the total result improvement. Again, Since \mathfrak{A} tackles the cases ($S \subset V_G \& S = V_G$), ($s \neq t \& s = t$) and (digraphs & undirected graphs) it efficiently solves not only ASTSPP but also TSWP, ATSWP, STSP ASTSP, STSPP.

For a discussion about the TSP's Problem Family and related publications and for a detailed description of Algorithm **A**, its meta-heuristics and comprehensive performance analysis (C++ implementation, Microsoft Visual Studio 2012) we refer to the book

"Multiple Destination Tours' and Paths' Efficient Determination in Directed Graphs" Peter H. Richter ISBN 978-1-63648-284-2, ELIVA PRESS, August 2021